অর্থাৎ মর্মার্থ হচ্ছে-তিনটি সমান সংখ্যার গুণফল এবং যে বস্তুর ১২টি ধার (edge) আছে তাকে ঘন বলে। ব্রহ্মগুপ্ত বলেছেন:
স্থাপ্যোহন্তঘনোহন্তকৃতিস্ত্রিগুণোত্তরসংগুণা চা ততপ্রথমাত, উত্তরকৃতিরস্থ্যগুণা ত্রিগুণা চোত্তর ঘনশ্চ ঘন।”
অর্থাৎ মর্মার্থ হচ্ছে-দুইটি রাশির যোগের ঘন নির্ণয় করতে হলে প্রথম রাশি = অন্ত্যসংজ্ঞক, দ্বিতীয়রাশি-উত্তরসংজ্ঞক ধরা হবে। তারপর অন্তের ঘনের সঙ্গে অন্ত্যের বর্গের সঙ্গে উত্তর এবং তিন গুণ করে যোগ করবে, তারপর অন্তের সঙ্গে উত্তরের বর্গ এবং তিন গুণ করে যোগ কর। সর্বশেষে উত্তরের ঘন যোগ কর। অর্থাৎ এ সূত্র থেকে আমরা বলতে পারি
(a+b)³= a³+3a2b+3ab²+b²
চতুবেদাচার্য অবশ্য এ সম্বন্ধে একটি সুন্দর উদাহরণ দিয়েছেন।
শ্রীধরাচার্য, মহাবীরাচার্য, শ্রীপতি প্রমুখেরা এই সূত্রটি দিয়েছিলেন।
n³ = sum r = 4 to M \{3r(r – I) + I\}
তবে কেউ কেউ n³ = n(n + a)(n – a) +a² (n – a) + a³ এই সূত্রটিও দিয়ে গিয়েছেন।
(চলবে)